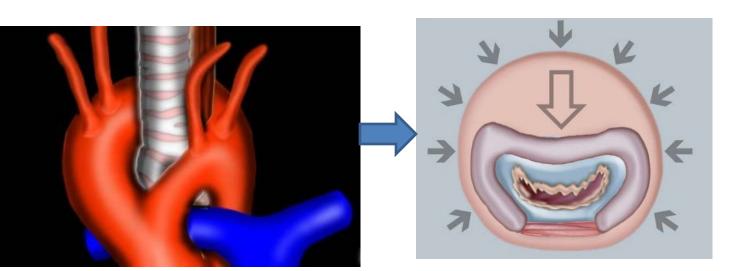
Laser Sintered Resorbable PCL Splints for Treating Tracheobronchalmalacia (TBM)

Scott J. Hollister^{1,2,3}, Colleen L. Flanagan¹, David A Zopf⁴, Robert J. Morrison⁴, Richard G. Ohye⁵, Glenn E. Green⁴

- ¹Department of Biomedical Engineering
- ²Department of Mechanical Engineering
- ³Department of Surgery
- ⁴Department of Otolaryngology
- ⁵Department of Cardiac Surgery
- The University of Michigan

Outline


- Tracheobronchalmalacia
- Tracheal Splint Clinical Goals & Design
- Laser Sintering PCL Splints
- Clinical Use and Outcomes
- Quality Control: Current & Future

Tracheobronchalmalacia (TBM)

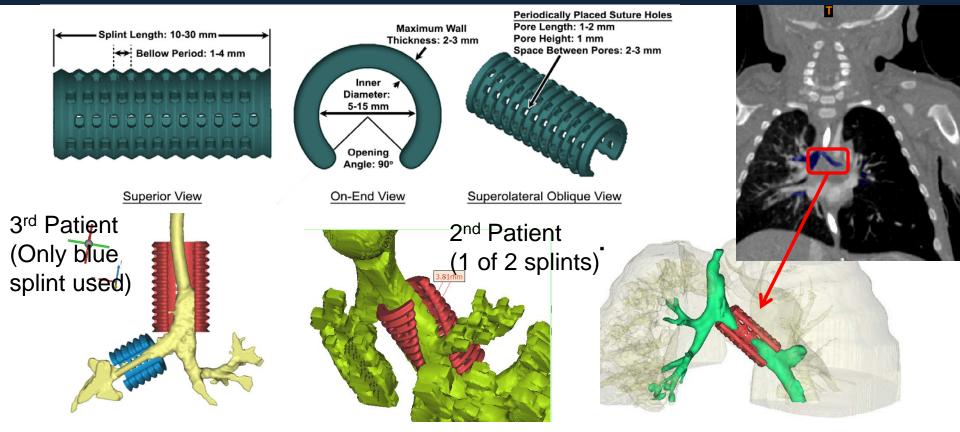
Tracheobronchalmalacia (TBM) in Humans

- Compression of airway, typically by malformed vascular structures
- Complete collapse on expiration
- Currently treated by tracheostomy/ventilators 1-2 years
- Significant complications, including death
- Need for patient specific implants due to different defect geometry (length, diameter, number)
- Stents have failed in children; FDA warning metallic tracheal stents

 Implanted splints external to airway found to give better results, but produced in an ad hoc manner

1st Patient Etiology

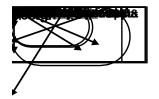
St


Tracheal Splint Clinical Goals and Design

Clinical Design Goals: Implanted Splint External to Airway

Mechanical Requirement: M; Biomaterial Requirement: B; Surgical Requirement:: S

- The splint should provide radial compressive mechanical support to keep the airway open and patent: <u>M/B – 0.12 MPa artery</u>; .01 MPa exhalation
- The splint should provide this radial mechanical support for a period of 24-30 months to allow tracheal remodeling and development: M/B
- The splint should allow transverse and bending displacement, not interfering with cervical motion: M
- The splint should allow growth and expansion of the tracheobronchial complex during this 24-30 month period: M - estimated 15N growth force
- The splint should not cause adverse tissue reaction or remodeling: <u>B/M</u> <u>Biocompatible</u>
- The splint should not interfere with the mucociliary architecture with the trachealbronchial lumen; it therefore should be placed externally: **B/S**
- Second surgical procedure should be avoided to remove the splint; therefore, the splint should be bioresorbable: <u>S/M</u> – resorbable in 3 years Surgical placement of the splint and attachment of the tracheobronchus into the splint should be straightforward: <u>S</u>; <u>suture holes in splint to "sling" airway</u>
- Patient Specific to account for different malacic airway diameter/length: <u>S/M</u>


Patient Specific Image-Based Design for Splint

- MATLAB program to automatically generate bellow design w suture holes
- <u>Design variables</u>: inner diameter, open angle, spiral angle, bellow height, wall thickness, suture hole width, etc (> 3,000,000 design perturbations)
- Input parameters from CT measurements from MIMICS Digital Model
- Fit splint to patient model in MIMICS
- Perform finite element analysis: compression, bending, opening (growth)
- Complex patient specific design requires 3D printing

Laser Sintering PCL Splints

Design and Manufacture Process: Outline

Scaffold/Implant Manufacturing by 3D Printing

Modular Image-Designed Scaffolds fabricated by laser sintering

Complete Video at http://www.mottchildren.org/news/archive/201403/babys-life-saved-after-3d-printed-devices-were-implanted-u

Modular Image-Designed Scaffold

PCL Laser Sintering

Materials and Equipment

- EOS P100 Laser Sintering System (<u>www.eos.info/en</u>)
- CAPA 6501 Polycaprolactone (PCL) purchased from Polysciences (<u>www.polysciences.com</u>) Target Mw = 50kDa
- Hydroxyapatite (HA) Plasma Biotal (<u>www.plasma-biotal.com</u>)
- Need to Cryogenically Mill Resorbable Polymers (PCL, PLA)
 Jet Pulverizer (<u>www.jetpulverizer.com</u>); Fraunhofer
 (http://www.umsicht.fraunhofer.de/en.html); Evonik (<u>http://north-america.evonik.com</u>); Target Particle Size Range: 25μm < x < 125 μm;
 Median 40-60 μm

References:

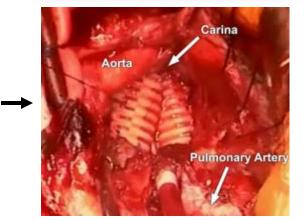
Partee et al., 2006, J Man Sci Eng, 128:531-540 Williams et al., 2005, Biomaterials, 26:4817-4827 Eshraghi, Das, 2010, Acta Biomaterialia; 6: 2467-2476 Eshraghi, Das, 2012, Acta Biomaterialia; 8: 3138-3143 Lohfield et al., 2012, Acta Biomaterialia; 8:3446-3456 Eosoly et al., 2010, Acta Biomaterialia; 6:2511-2517

PCL Laser Sintering Parameters

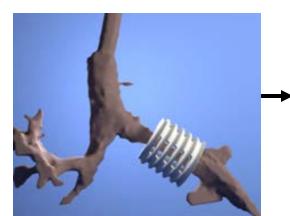
- Important PCL Laser Sintering Parameters: Bed Temperature, Laser Power, Laser Scanning Speed, Scan Spacing, Hatch Spacing, Beam Offset Our parameters established at University of Michigan: <u>Partee</u>, <u>Hollister, Das. (2006) J Mfg Sci Eng, 128:531-540</u>
- Laser Power: 1 5.4 Watts; Typically 4 Watts (UM)
- Bed Temperature: 38 56°C; Typically 50-56°C (UM)
- <u>Laser Scanning Speed</u>: 900 1800 mm/s; Typically 1000-1500mm/s (UM)
- <u>Scan Spacing</u>: .07 .2mm; Typically 0.15 0.2mm (UM)

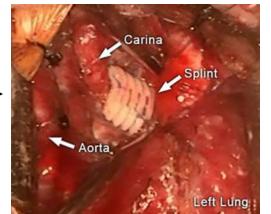
References (see prev slide): Eshragi/Das (2010/2012); Lohfield (2012); Eosoly (2010; 2012); Partee (2006); Williams (2005)

Clinical Use and Outcomes


Design & Implantation of Patient Specific Splints

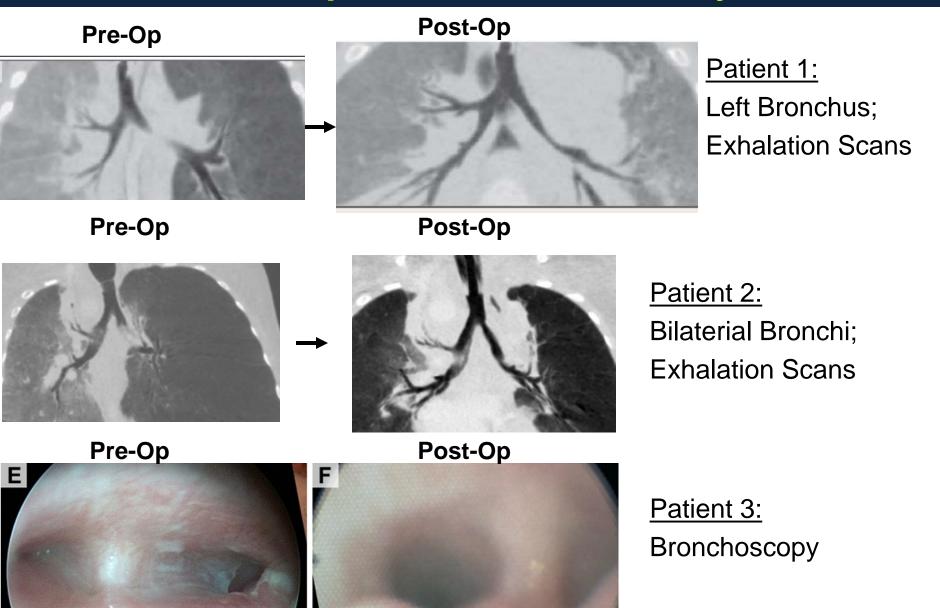
Patient 1:

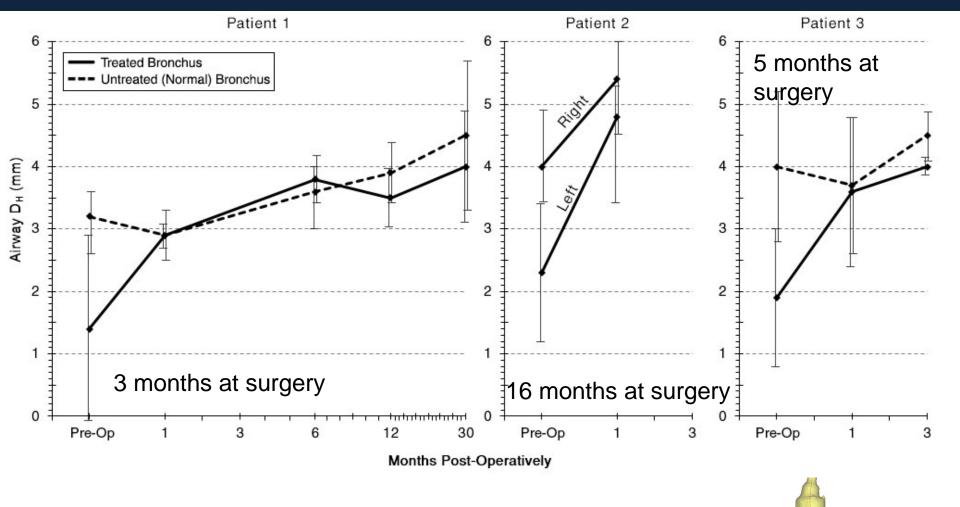

Left Bronchus; IRB Approval, Emergency through FDA NEJM (2013), 368:2043-2045. 31 months post-surgery



Patient 2:

Bilaterial Bronchi; IRB Approval, Emergency through FDA 8 months post-surgery




Patient 3:

Left Bronchus; IRB Approval, Emergency through FDA 6 months post-surgery

Pre-Op and Post-OP Patency

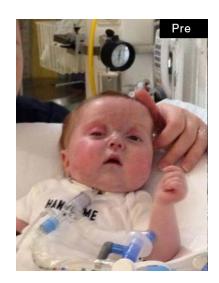
Bronchial Growth in Patients

Left

Hydraulic Diameter Measures Averaged along Bronchus in MIMICS

All Patients Pre- and Post-Op

Patient 1 – Pre-Op


Patient 1 – 2nd Birthday

Patient 2 – Pre-op 16 months

Patient 2 – First time sitting up

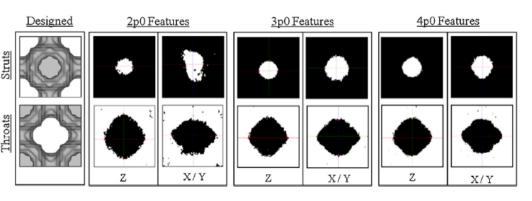
Patient 3 – Pre-Op

Patient 3 – Post-Op 2 months

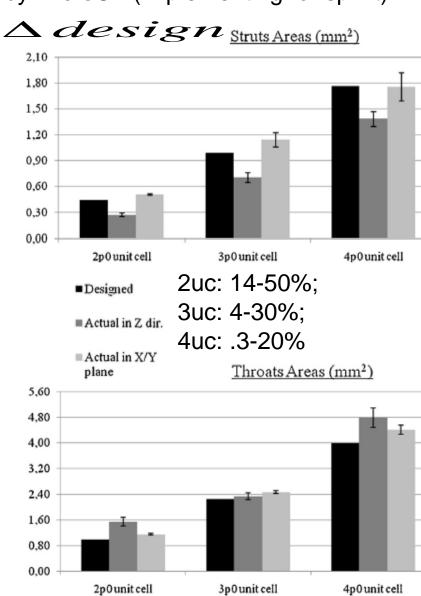
Quality Control: Current & Future


Quality Control Checks for Each Build

- <u>Powder</u>: Check particle size range; Powder Visual Inspection; Humidity Solid Hygrometer Should be 10% to 35% relative humidity
- <u>Build</u>: Check for errors on build log; visual inspection for part dragging; visual inspection for sintered "islands" when unpack build; stair stepping on parts
- Geometry: Caliper Measures (current); Micro-CT to assess part geometry/density (implementing)
- Mechanical Properties: Standard cylindrical test specimens for modulus; splint specimens opening, compression, bending geometric stiffness (implementing)


Geometry Quality Control

 For topology optimized (optimized for stiffness/permeability) microstructures, compare designed vs manufactured geometry by microCT (implementing for splint)


Design/Fabrication Process

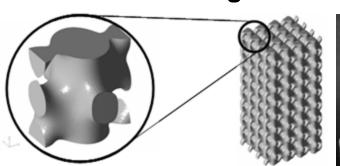
Design to Fabricated Strut/Throat Comparison

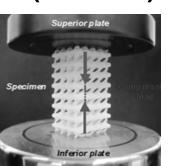
Fidelity depends on Unit Cell Size & thus Feature resolution; Dias et al, (2014), 36:448-457

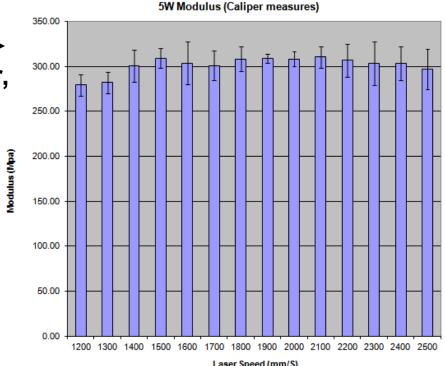
Mechanical Testing Quality Control - General

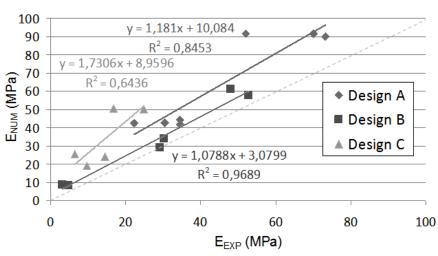
Solid Test Cylinder Modulus

- Affected by Laser scanning
 parameters: Bed Temp, Laser Power,
 Scan Speed 1200-2500 mm/s
- 2. Anisotropic due to layering

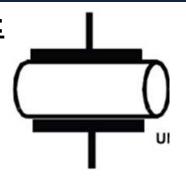

 $Ex = 295.5 \pm 4.4$ MPa parallel to bed


Ey = 292.7 ± 9.9 MPa parallel to bed


 $Ez = 311.7 \pm 1.2 \text{ Mpa}$ laser direction


Optimized Microstructures

- Topology optimized for desired stiffness/permeability
- 2. Compare FE idealized to laser sintered mechanically tested
- 3. Correlation deviates from 1 to 1 as feature sizes get smaller (< 0.8mm)



Coelho et al, (in press) Med Eng Phys

Mechanical Testing Quality Control - Splint

Compression:
Simulate
exhalation
loading

Opening:
Simulate growth and inhalation loading

Design Target:

- 1. Withstand arterial compression & respiration pressure
- 2. Allow growth

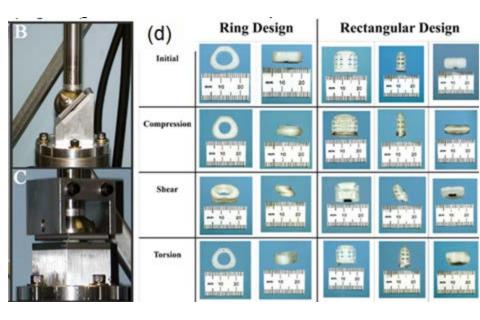
 $Ku = f; \Rightarrow$

 $K = \frac{f(artery / exhalation \ pressure*length*1mm; \frac{N}{mm^2}*mm*mm)}{u(target \langle .1comp; .2open \rangle * inner \ diameter; mm)}$

Stiffness in compression (.12N * length / .1* ID) > $\approx 10N / mm$

Stiffness in opening (.12N * length / .2 * OpenAngle) $\leq \approx 2N / mm$

Patient 1 - Compression: 128.6 ± 11.8 N/mm; Opening: 2.77 ± 0.26 N/mm;


Patient 2 - Compression: $72.2 \pm 14.6 \text{ N/mm}$ (11mm); Opening: $1.43 \pm 0.12 \text{ N/mm}$; $195.8 \pm 16.2 \text{ N/mm}$ (23mm); Opening: $2.43 \pm 0.15 \text{ N/mm}$;

<u>Pig Preclinical</u>: Compression: $28.5 \pm 1.6 \text{ N/mm}$; Opening: $.43 \pm 0.05 \text{ N/mm}$; 20% growth over 8 months

Fatigue & Degradation Quality Control

- For resorbable materials, need to determine affect of sintering on fatigue & degradation
- Sintering doesn't significantly change/degrade PCL molecular weight prior to implantation; ~40% loss of Mw by 18 months *in vivo* (spine cage in pig).
- Fatigue properties depend significantly on geometry; Have run spine cages to 5 million cycles in dry environment – need to test in solution

Conclusions

- Developed Laser Sintered, resorbable PCL patient specific splint for treating tracheobronchalmalacia; Successful in 3 patients up to 31 months
- Fabricated topology optimized scaffolds with complex microstructure
- Splints with 0.4 to 2.8 N/mm opening stiffness allowed growth in patients and preclinical pig model; 28 to 195 N/mm compression stiffness protects malacic airway
- Laser parameters (scan speed, bed temp, scan power, particle size) significantly affect device geometry, mechanical properties (stiffness, strength, fatigue) & degradation (need to be tested)
- Ability to meet geometric and mechanical requirements depends on how close feature size is to minimum resolvable sintering feature -> closer to minimum feature size will mean larger deviation between design & actual properties

Acknowledgments

- Glenn Green, MD collaborator on tracheal splint; tracheal splint surgery
- David Zopf, MD; Robert Morrison, MD; tracheal splint
- Will Giannobile, DDS, PhD Periodontal Scaffold
- Giulio Rasperini, DDS Periodontal scaffold
- Richard Ohye, MD tracheal splint (surgery)
- Marc Nelson, MD tracheal splint(referring)
- Chia-Ying Lin, PhD cervical spine fusion
- Colleen Flanagan, MSE Splint SLS manufacture
- Annie Mitsak, PhD; Eiji Saito PhD
- Matthew Wheeler, PhD collaborator on large animal models
 ADSC
- Jonathon Mosley, Dr. Chanaka Rabel, Aaron Maki Animal Surgeries
- Supported by the NIH and a MICHR grant